deepseek本地部署个性化deepsea个人整合包

deepseek 本地部署 个性化 deepsea个人整合包

DeepSeek是一个基于深度学习的个性化推荐系统,可以用于本地部署。以下是一个简单的DeepSeek本地部署示例:

确保你已经安装了Python和相关依赖库。可以使用以下命令安装:
pip install numpy pandas scikit-learn matplotlib seaborn
创建一个名为deepseek_local_deployment.py的文件,并在其中编写以下代码:
import osimport sysimport jsonimport numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_scorefrom sklearn.ensemble import RandomForestClassifierfrom sklearn.feature_extraction.text import CountVectorizerfrom sklearn.pipeline import Pipelinefrom sklearn.preprocessing import StandardScalerfrom sklearn.svm import SVCfrom sklearn.utils import class_weightfrom deepseek import DeepSeek# 加载数据data = pd.read_csv("data.csv")# 文本预处理vectorizer = CountVectorizer()X = vectorizer.fit_transform(data["text"])y = data["label"]# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建管道pipeline = Pipeline([    ("vect", vectorizer),    ("clf", RandomForestClassifier(class_weight="balanced")),])# 训练模型pipeline.fit(X_train, y_train)# 预测predictions = pipeline.predict(X_test)# 评估模型accuracy = accuracy_score(y_test, predictions)print("Accuracy: ", accuracy)# 保存模型with open("deepseek_local_deployment.pkl", "wb") as f:    pickle.dump(pipeline, f)
修改data.csv文件,添加一个名为text的列,用于存储文本数据。例如:
name, textAlice, I love coding!Bob, Python is awesome.Charlie, I enjoy playing sports.
运行deepseek_local_deployment.py文件,将模型保存到本地文件中。例如:
python deepseek_local_deployment.py
在浏览器中访问http://localhost:5000/deepseek,即可看到个性化推荐结果。

na.png

本网站文章未经允许禁止转载,合作/权益/投稿 请联系平台管理员 Email:epebiz@outlook.com